Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Lancet Respir Med ; 10(10): 930-931, 2022 10.
Article in English | MEDLINE | ID: covidwho-2229020

Subject(s)
COVID-19 , Humans , SARS-CoV-2
2.
BMC Infect Dis ; 22(1): 683, 2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-2214536

ABSTRACT

BACKGROUND: Despite the development of safe and effective vaccines, effective treatments for COVID-19 disease are still urgently needed. Several antiviral drugs have shown to be effective in reducing progression of COVID-19 disease. METHODS: In the present work, we use an agent-based mathematical model to assess the potential population impact of the use of antiviral treatments in four countries with different demographic structure and current levels of vaccination coverage: Kenya, Mexico, United States (US) and Belgium. We analyzed antiviral effects on reducing hospitalization and death, and potential antiviral effects on reducing transmission. For each country, we varied daily treatment initiation rate (DTIR) and antiviral effect in reducing transmission (AVT). RESULTS: Irrespective of location and AVT, widespread antiviral treatment of symptomatic adult infections (20% DTIR) prevented the majority of COVID-19 deaths, and recruiting 6% of all adult symptomatic infections daily reduced mortality by over 20% in all countries. Furthermore, our model projected that targeting antiviral treatment to the oldest age group (65 years old and older, DTIR of 20%) can prevent over 30% of deaths. Our results suggest that early antiviral treatment (as soon as possible after inception of infection) is needed to mitigate transmission, preventing 50% more infections compared to late treatment (started 3 to 5 days after symptoms onset). Our results highlight the synergistic effect of vaccination and antiviral treatment: as the vaccination rate increases, antivirals have a larger relative impact on population transmission. Finally, our model projects that even in highly vaccinated populations, adding antiviral treatment can be extremely helpful to mitigate COVID-19 deaths. CONCLUSIONS: These results suggest that antiviral treatments can become a strategic tool that, in combination with vaccination, can significantly reduce COVID-19 hospitalizations and deaths and can help control SARS-CoV-2 transmission.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Adult , Aged , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Hospitalization , Humans , Pandemics/prevention & control , SARS-CoV-2 , United States
3.
Clin Pharmacol Ther ; 112(6): 1224-1235, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1999842

ABSTRACT

To assess the combined role of anti-viral monoclonal antibodies (mAbs) and vaccines in reducing severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) transmission and mortality in the United States, an agent-based model was developed that accounted for social contacts, movement/travel, disease progression, and viral shedding. The model was calibrated to coronavirus disease 2019 (COVID-19) mortality between October 2020 and April 2021 (aggressive pandemic phase), and projected an extended outlook to estimate mortality during a less aggressive phase (April-August 2021). Simulated scenarios evaluated mAbs for averting infections and deaths in addition to vaccines and aggregated non-pharmaceutical interventions. Scenarios included mAbs as a treatment of COVID-19 and for passive immunity for postexposure prophylaxis (PEP) during a period when variants were susceptible to the mAbs. Rapid diagnostic testing paired with mAbs was evaluated as an early treatment-as-prevention strategy. Sensitivity analyses included increasing mAb supply and vaccine rollout. Allocation of mAbs for use only as PEP averted up to 14% more infections than vaccine alone, and targeting individuals ≥ 65 years averted up to 37% more deaths. Rapid testing for earlier diagnosis and mAb use amplified these benefits. Doubling the mAb supply further reduced infections and mortality. mAbs provided benefits even as proportion of the immunized population increased. Model projections estimated that ~ 42% of expected deaths between April and August 2021 could be averted. Assuming sensitivity to mAbs, their use as early treatment and PEP in addition to vaccines would substantially reduce SARS-CoV-2 transmission and mortality even as vaccination increases and mortality decreases. These results provide a template for informing public health policy for future pandemic preparedness.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Pharmacy , Humans , SARS-CoV-2 , Pandemics/prevention & control , Public Health , Antibodies, Monoclonal/therapeutic use
4.
Sci Transl Med ; 14(655): eabn3041, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1962063

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic evolves and vaccine rollout progresses, the availability and demand for monoclonal antibodies for the prevention and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also accelerating. This longitudinal serological study evaluated the magnitude and potency of the endogenous antibody response to COVID-19 vaccination in participants who first received a COVID-19 monoclonal antibody in a prevention study. Over the course of 6 months, serum samples were collected from a population of nursing home residents and staff enrolled in a clinical trial who were randomized to either bamlanivimab treatment or placebo. In an unplanned component of this trial, a subset of these participants was subsequently fully vaccinated with two doses of either SpikeVax (Moderna) or Comirnaty (BioNTech/Pfizer) COVID-19 mRNA vaccines. This post hoc analysis assessed the immune response to vaccination for 135 participants without prior SARS-CoV-2 infection. Antibody titers and potency were assessed using three assays against SARS-CoV-2 proteins that bamlanivimab does not efficiently bind to, thereby reflecting the endogenous antibody response. All bamlanivimab and placebo recipients mounted a robust immune response to full COVID-19 vaccination, irrespective of age, risk category, and vaccine type with any observed differences of uncertain clinical importance. These findings are pertinent for informing public health policy with results that suggest that the benefit of receiving COVID-19 vaccination at the earliest opportunity outweighs the minimal effect on the endogenous immune response due to prior prophylactic COVID-19 monoclonal antibody infusion.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
5.
Lancet Infect Dis ; 22(10): 1444-1454, 2022 10.
Article in English | MEDLINE | ID: covidwho-1915194

ABSTRACT

BACKGROUND: There is an unmet need for COVID-19 prevention in patient populations who have not mounted or are not expected to mount an adequate immune response to complete COVID-19 vaccination. We previously reported that a single subcutaneous 1200 mg dose of the monoclonal antibody combination casirivimab and imdevimab (CAS + IMD) prevented symptomatic SARS-CoV-2 infections by 81·4% in generally healthy household contacts of SARS-CoV-2-infected individuals over a 1-month efficacy assessment period. Here we present additional results, including the 7-month follow-up period (months 2-8), providing additional insights about the potential for efficacy in pre-exposure prophylaxis settings. METHODS: This was a randomised, double-blind, placebo-controlled trial done in the USA, Romania, and Moldova in 2020-2021, before the emergence of omicron (B.1.1.529) and omicron-lineage variants. Uninfected and unvaccinated household contacts of infected individuals, judged by the investigator to be in good health, were randomly assigned (1:1) to receive 1200 mg CAS + IMD or placebo by subcutaneous injection according to a central randomisation scheme provided by an interactive web response system; randomisation was stratified per site by the test results of a local diagnostic assay for SARS-CoV-2 and age group at baseline. COVID-19 vaccines were prohibited before randomisation, but participants were allowed to receive COVID-19 vaccination during the follow-up period. Participants who developed COVID-19 symptoms during the follow-up period underwent RT-PCR testing. Prespecified endpoints included the proportion of previously uninfected and baseline-seronegative participants (seronegative-modified full analysis set) who had RT-PCR-confirmed COVID-19 in the follow-up period (post-hoc for the timepoints of months 2-5 and 6-8 only) and underwent seroconversion (ie, became seropositive, considered a proxy for any SARS-CoV-2 infections [symptomatic and asymptomatic]; prespecified up to day 57, post-hoc for all timepoints thereafter). We also assessed the incidence of treatment-emergent adverse events. This study is registered with ClinicalTrials.gov, NCT04452318. FINDINGS: From July 13, 2020, to Oct 4, 2021, 2317 participants who were RT-PCR-negative for SARS-CoV-2 were randomly assigned, of whom 1683 (841 assigned to CAS + IMD and 842 assigned to placebo) were seronegative at baseline. During the entirety of the 8-month study, CAS + IMD reduced the risk of COVID-19 by 81·2% (nominal p<0·0001) versus placebo (prespecified analysis). During the 7-month follow-up period, protection was greatest during months 2-5, with a 100% relative risk reduction in COVID-19 (nominal p<0·0001; post-hoc analysis). Efficacy waned during months 6-8 (post-hoc analysis). Seroconversion occurred in 38 (4·5%) of 841 participants in the CAS + IMD group and in 181 (21·5%) of 842 in the placebo group during the 8-month study (79·0% relative risk reduction vs placebo; nominal p<0·0001). Six participants in the placebo group were hospitalised due to COVID-19 versus none who received CAS + IMD. Serious treatment-emergent adverse events (including COVID-19) were reported in 24 (1·7%) of 1439 participants receiving CAS + IMD and in 23 (1·6%) of 1428 receiving placebo. Five deaths were reported, none of which were due to COVID-19 or related to the study drugs. INTERPRETATION: CAS + IMD is not authorised in any US region as of Jan 24, 2022, because data show that CAS + IMD is not active against omicron-lineage variants. In this study, done before the emergence of omicron-lineage variants, a single subcutaneous 1200 mg dose of CAS + IMD protected against COVID-19 for up to 5 months of community exposure to susceptible strains of SARS-CoV-2 in the pre-exposure prophylaxis setting, in addition to the post-exposure prophylaxis setting that was previously shown. FUNDING: Regeneron Pharmaceuticals, F Hoffmann-La Roche, US National Institute of Allergy and Infectious Diseases, US National Institutes of Health.


Subject(s)
COVID-19 , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Pharmaceutical Preparations , SARS-CoV-2
6.
Clin Infect Dis ; 75(1): e1028-e1036, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1621585

ABSTRACT

BACKGROUND: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectious virus isolation in outpatients with coronavirus disease 2019 (COVID-19) has been associated with viral RNA levels and symptom duration, little is known about the host, disease, and viral determinants of infectious virus detection. METHODS: COVID-19 adult outpatients were enrolled within 7 days of symptom onset. Clinical symptoms were recorded via patient diary. Nasopharyngeal swabs were collected to quantitate SARS-CoV-2 RNA by reverse transcriptase polymerase chain reaction and for infectious virus isolation in Vero E6-cells. SARS-CoV-2 antibodies were measured in serum using a validated ELISA assay. RESULTS: Among 204 participants with mild-to-moderate symptomatic COVID-19, the median nasopharyngeal viral RNA was 6.5 (interquartile range [IQR] 4.7-7.6 log10 copies/mL), and 26% had detectable SARS-CoV-2 antibodies (immunoglobulin (Ig)A, IgM, IgG, and/or total Ig) at baseline. Infectious virus was recovered in 7% of participants with SARS-CoV-2 antibodies compared to 58% of participants without antibodies (prevalence ratio [PR] = 0.12, 95% confidence interval [CI]: .04, .36; P = .00016). Infectious virus isolation was also associated with higher levels of viral RNA (mean RNA difference +2.6 log10, 95% CI: 2.2, 3.0; P < .0001) and fewer days since symptom onset (PR = 0.79, 95% CI: .71, .88 per day; P < .0001). CONCLUSIONS: The presence of SARS-CoV-2 antibodies is strongly associated with clearance of infectious virus. Seropositivity and viral RNA levels are likely more reliable markers of infectious virus clearance than subjective measure of COVID-19 symptom duration. Virus-targeted treatment and prevention strategies should be administered as early as possible and ideally before seroconversion. CLINICAL TRIALS REGISTRATION: NCT04405570.


Subject(s)
COVID-19 , Communicable Diseases , Adult , Antibodies, Viral , COVID-19 Testing , Humans , Immunoglobulin A , Outpatients , RNA, Viral , SARS-CoV-2
7.
Sci Transl Med ; 14(628): eabl7430, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1593318

ABSTRACT

There is an urgent need for an effective, oral, direct-acting therapeutic to block transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent progression to severe coronavirus disease 2019 (COVID-19). In a phase 2a double-blind, placebo-controlled, randomized, multicenter clinical trial, we evaluated the safety, tolerability, and antiviral efficacy of the nucleoside analog molnupiravir in 202 unvaccinated participants with confirmed SARS-CoV-2 infection and symptom duration <7 days. Participants were randomized 1:1 to receive molnupiravir (200 mg) or placebo and then 3:1 to receive molnupiravir (400 or 800 mg) or placebo, orally twice daily for 5 days. Antiviral activity was assessed by reverse transcriptase polymerase chain reaction (RT-PCR) for SARS-CoV-2 RNA in nasopharyngeal swabs. Infectious virus was assessed by inoculation of cultured Vero cells with samples from nasopharyngeal swabs and was detected by RT-PCR. Time to viral RNA clearance (primary endpoint) was decreased in the 800-mg molnupiravir group (median 14 days) compared to the placebo group (median 15 days) (log rank P value = 0.013). Of participants receiving 800 mg of molnupiravir, 92.5% achieved viral RNA clearance compared with 80.3% of placebo recipients by study end (4 weeks). Infectious virus (secondary endpoint) was detected in swabs from 1.9% of the 800-mg molnupiravir group compared with 16.7% of the placebo group at day 3 of treatment (P = 0.016). At day 5 of treatment, infectious virus was not isolated from any participants receiving 400 or 800 mg of molnupiravir compared with 11.1% of placebo recipients (P = 0.034 and 0.027, respectively). Molnupiravir was well tolerated across all doses.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Cytidine/analogs & derivatives , Humans , Hydroxylamines , RNA, Viral/genetics , SARS-CoV-2 , Treatment Outcome , Vero Cells
8.
Clin Infect Dis ; 73(9): 1717-1721, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501059

ABSTRACT

As of March 2021, coronavirus disease 2019 (COVID-19) had caused more than 123 million infections and almost 3 million deaths worldwide. Dramatic advances have been made in vaccine development and nonpharmaceutical interventions to stop the spread of infection. However, treatments to stop disease progression are limited. A wide variety of "repurposed" drugs evaluated for treatment of COVID-19 have had little or no benefit. More recently, intravenous monoclonal antibody (mAb) combinations have been authorized by the US Food and Drug Administration for emergency use for outpatients with mild to moderate COVID-19 including some active against emerging severe acute respiratory syndrome coronavirus 2 variants of concern. Easier to administer therapeutics including intramuscular and subcutaneous mAbs and oral antivirals are in clinical trials. Reliable, safe, effective COVID-19 treatment for early infection in the outpatient setting is of urgent and critical importance. Availability of such treatment should lead to reduced progression of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Pharmaceutical Preparations , Humans , Outpatients , SARS-CoV-2
9.
American Heart Journal ; 242:172-173, 2021.
Article in English | ScienceDirect | ID: covidwho-1487572

ABSTRACT

Background In a Phase 3 prevention trial, the monoclonal antibody combination casirivimab and imdevimab (REGEN-COVTM) administered subcutaneously (SC) prevented symptomatic SARS-CoV-2 infection in asymptomatic adults/adolescents living in the same household as a SARS-CoV-2-infected individual (index case). Individuals with cardiovascular disease (CVD) and/or diabetes are at increased risk of moderate/severe COVID-19. Methods Uninfected individuals ≥12 years, identified ≤96 hours of index case being diagnosed SARS-CoV-2 positive, were randomized 1:1 to REGEN-COV 1200mg SC or placebo. The primary endpoint was the proportion of participants who developed symptomatic infection (COVID-19) during the 28-day efficacy assessment period among those who were SARS-CoV-2 RT-qPCR negative and without evidence of immunity (seronegative) at baseline. A post-hoc analysis assessed efficacy in participants with CVD (including hypertension) and/or diabetes. Overall safety is reported. Results The study included SARS-CoV-2 RT-qPCR negative participants at baseline (n=2067). There was an 81.4% relative risk reduction (RRR) of symptomatic infection with REGEN-COV in the overall seronegative population (n=1505;Figure 1;Table 1). In participants with CVD (n=332) or diabetes (n=103), the RRRs of developing symptomatic infection with REGEN-COV versus placebo were 54.9% and 69.0%, respectively. Similar results were observed when analyses were performed regardless of baseline serology status. Treatment-emergent adverse events occurring at ≥2% included COVID-19, asymptomatic COVID-19, headache, and injection-site reaction (Table 2). Conclusions In study participants with CVD and/or diabetes, who are known to be at increased risk of severe disease if infected, treatment with REGEN-COV SC reduced the risk of developing symptomatic SARS-CoV-2 infection, consistent with the overall study results..

10.
Viruses ; 13(10)2021 09 24.
Article in English | MEDLINE | ID: covidwho-1438745

ABSTRACT

SARS-CoV-2 vaccine clinical trials assess efficacy against disease (VEDIS), the ability to block symptomatic COVID-19. They only partially discriminate whether VEDIS is mediated by preventing infection completely, which is defined as detection of virus in the airways (VESUSC), or by preventing symptoms despite infection (VESYMP). Vaccine efficacy against transmissibility given infection (VEINF), the decrease in secondary transmissions from infected vaccine recipients, is also not measured. Using mathematical modeling of data from King County Washington, we demonstrate that if the Moderna (mRNA-1273QS) and Pfizer-BioNTech (BNT162b2) vaccines, which demonstrated VEDIS > 90% in clinical trials, mediate VEDIS by VESUSC, then a limited fourth epidemic wave of infections with the highly infectious B.1.1.7 variant would have been predicted in spring 2021 assuming rapid vaccine roll out. If high VEDIS is explained by VESYMP, then high VEINF would have also been necessary to limit the extent of this fourth wave. Vaccines which completely protect against infection or secondary transmission also substantially lower the number of people who must be vaccinated before the herd immunity threshold is reached. The limited extent of the fourth wave suggests that the vaccines have either high VESUSC or both high VESYMP and high VEINF against B.1.1.7. Finally, using a separate intra-host mathematical model of viral kinetics, we demonstrate that a 0.6 log vaccine-mediated reduction in average peak viral load might be sufficient to achieve 50% VEINF, which suggests that human challenge studies with a relatively low number of infected participants could be employed to estimate all three vaccine efficacy metrics.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , COVID-19/immunology , COVID-19 Vaccines/pharmacology , Humans , Models, Theoretical , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vaccines/pharmacology , Washington
12.
N Engl J Med ; 385(13): 1184-1195, 2021 09 23.
Article in English | MEDLINE | ID: covidwho-1341035

ABSTRACT

BACKGROUND: REGEN-COV (previously known as REGN-COV2), a combination of the monoclonal antibodies casirivimab and imdevimab, has been shown to markedly reduce the risk of hospitalization or death among high-risk persons with coronavirus disease 2019 (Covid-19). Whether subcutaneous REGEN-COV prevents severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent Covid-19 in persons at high risk for infection because of household exposure to a person with SARS-CoV-2 infection is unknown. METHODS: We randomly assigned, in a 1:1 ratio, participants (≥12 years of age) who were enrolled within 96 hours after a household contact received a diagnosis of SARS-CoV-2 infection to receive a total dose of 1200 mg of REGEN-COV or matching placebo administered by means of subcutaneous injection. At the time of randomization, participants were stratified according to the results of the local diagnostic assay for SARS-CoV-2 and according to age. The primary efficacy end point was the development of symptomatic SARS-CoV-2 infection through day 28 in participants who did not have SARS-CoV-2 infection (as measured by reverse-transcriptase-quantitative polymerase-chain-reaction assay) or previous immunity (seronegativity). RESULTS: Symptomatic SARS-CoV-2 infection developed in 11 of 753 participants in the REGEN-COV group (1.5%) and in 59 of 752 participants in the placebo group (7.8%) (relative risk reduction [1 minus the relative risk], 81.4%; P<0.001). In weeks 2 to 4, a total of 2 of 753 participants in the REGEN-COV group (0.3%) and 27 of 752 participants in the placebo group (3.6%) had symptomatic SARS-CoV-2 infection (relative risk reduction, 92.6%). REGEN-COV also prevented symptomatic and asymptomatic infections overall (relative risk reduction, 66.4%). Among symptomatic infected participants, the median time to resolution of symptoms was 2 weeks shorter with REGEN-COV than with placebo (1.2 weeks and 3.2 weeks, respectively), and the duration of a high viral load (>104 copies per milliliter) was shorter (0.4 weeks and 1.3 weeks, respectively). No dose-limiting toxic effects of REGEN-COV were noted. CONCLUSIONS: Subcutaneous REGEN-COV prevented symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection in previously uninfected household contacts of infected persons. Among the participants who became infected, REGEN-COV reduced the duration of symptomatic disease and the duration of a high viral load. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT04452318.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Diseases , COVID-19/virology , Child , Double-Blind Method , Drug Combinations , Female , Humans , Incidence , Injections, Subcutaneous , Male , Middle Aged , Patient Acuity , Viral Load , Young Adult , COVID-19 Drug Treatment
13.
Sci Rep ; 11(1): 15531, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333987

ABSTRACT

Trial results for two COVID-19 vaccines suggest at least 90% efficacy against symptomatic disease (VEDIS). It remains unknown whether this efficacy is mediated by lowering SARS-CoV-2 infection susceptibility (VESUSC) or development of symptoms after infection (VESYMP). We aim to assess and compare the population impact of vaccines with different efficacy profiles (VESYMP and VESUSC) satisfying licensure criteria. We developed a mathematical model of SARS-CoV-2 transmission, calibrated to data from King County, Washington. Rollout scenarios starting December 2020 were simulated with combinations of VESUSC and VESYMP resulting in up to 100% VEDIS. We assumed no reduction of infectivity upon infection conditional on presence of symptoms. Proportions of cumulative infections, hospitalizations and deaths prevented over 1 year from vaccination start are reported. Rollouts of 1 M vaccinations (5000 daily) using vaccines with 50% VEDIS are projected to prevent 23-46% of infections and 31-46% of deaths over 1 year. In comparison, vaccines with 90% VEDIS are projected to prevent 37-64% of infections and 46-64% of deaths over 1 year. In both cases, there is a greater reduction if VEDIS is mediated mostly by VESUSC. The use of a "symptom reducing" vaccine will require twice as many people vaccinated than a "susceptibility reducing" vaccine with the same 90% VEDIS to prevent 50% of the infections and death over 1 year. Delaying the start of the vaccination by 3 months decreases the expected population impact by more than 50%. Vaccines which prevent COVID-19 disease but not SARS-CoV-2 infection, and thereby shift symptomatic infections to asymptomatic infections, will prevent fewer infections and require larger and faster vaccination rollouts to have population impact, compared to vaccines that reduce susceptibility to infection. If uncontrolled transmission across the U.S. continues, then expected vaccination in Spring 2021 will provide only limited benefit.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Child , Child, Preschool , Hospitalization , Humans , Infant , Middle Aged , SARS-CoV-2/isolation & purification , Vaccination , Young Adult
14.
EClinicalMedicine ; 37: 100968, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1290307

ABSTRACT

BACKGROUND: We evaluated features of HIV transmission networks involving persons diagnosed during incident HIV infection (IHI) to assess network-based opportunities to curtail onward transmission. METHODS: Transmission networks were constructed using partial pol sequences reported to North Carolina surveillance among persons with recent (2014-2018) and past (<2014) HIV diagnoses. IHI were defined as documented acute infections or seroconversion. Demographic and virologic features of HIV genetic clusters (<1.5% pairwise genetic distance) involving ≥ 1 IHI were assessed. Persons with viral genetic links and who had diagnoses >90 days prior to an IHI were further characterized. We assessed named partner outcomes among IHI index persons using contact tracing data. FINDINGS: Of 4,405 HIV diagnoses 2014-2018 with sequences, there were 323 (7%) IHI index persons; most were male (88%), Black (65%), young (68% <30 years), and reported sex with men (MSM) risk (79%). Index persons were more likely to be cluster members compared to non-index persons diagnosed during the same period (72% vs. 49%). In total, 162 clusters were identified involving 233 IHI, 577 recent diagnoses, and 163 past diagnoses. Most IHI cases (53%) had viral linkages to ≥1 previously diagnosed person without evidence of HIV viral suppression in the year prior to the diagnosis of the IHI index. In contact tracing, only 53% IHI cases named an HIV-positive contact, resulting in 0.5 previously diagnosed persons detected per IHI investigated. When combined with viral analyses, the detection rate of viremic previously diagnosed persons increased to 1.3. INTERPRETATION: Integrating public health with molecular epidemiology, revealed that more than half of IHI have viral links to persons with previously diagnosed unsuppressed HIV infection which was largely unrecognized by traditional contact tracing. Enhanced partner services to support engagement and retention in HIV care and improved case finding supported by rapid phylogenetic analysis are tools to substantially reduce onward HIV transmission.

15.
J Clin Transl Sci ; 5(1): e106, 2021 Apr 21.
Article in English | MEDLINE | ID: covidwho-1260895

ABSTRACT

INTRODUCTION: COVID-19 altered research in Clinical and Translational Science Award (CTSA) hubs in an unprecedented manner, leading to adjustments for COVID-19 research. METHODS: CTSA members volunteered to conduct a review on the impact of CTSA network on COVID-19 pandemic with the assistance from NIH survey team in October 2020. The survey questions included the involvement of CTSAs in decision-making concerning the prioritization of COVID-19 studies. Descriptive and statistical analyses were conducted to analyze the survey data. RESULTS: 60 of the 64 CTSAs completed the survey. Most CTSAs lacked preparedness but promptly responded to the pandemic. Early disruption of research triggered, enhanced CTSA engagement, creation of dedicated research areas and triage for prioritization of COVID-19 studies. CTSAs involvement in decision-making were 16.75 times more likely to create dedicated diagnostic laboratories (95% confidence interval [CI] = 2.17-129.39; P < 0.01). Likewise, institutions with internal funding were 3.88 times more likely to establish COVID-19 dedicated research (95% CI = 1.12-13.40; P < 0.05). CTSAs were instrumental in securing funds and facilitating establishment of laboratory/clinical spaces for COVID-19 research. Workflow was modified to support contracting and IRB review at most institutions with CTSAs. To mitigate chaos generated by competing clinical trials, central feasibility committees were often formed for orderly review/prioritization. CONCLUSIONS: The lessons learned from the COVID-19 pandemic emphasize the pivotal role of CTSAs in prioritizing studies and establishing the necessary research infrastructure, and the importance of prompt and flexible research leadership with decision-making capacity to manage future pandemics.

16.
JAMA ; 326(1): 46-55, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1251867

ABSTRACT

Importance: Preventive interventions are needed to protect residents and staff of skilled nursing and assisted living facilities from COVID-19 during outbreaks in their facilities. Bamlanivimab, a neutralizing monoclonal antibody against SARS-CoV-2, may confer rapid protection from SARS-CoV-2 infection and COVID-19. Objective: To determine the effect of bamlanivimab on the incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities. Design, Setting, and Participants: Randomized, double-blind, single-dose, phase 3 trial that enrolled residents and staff of 74 skilled nursing and assisted living facilities in the United States with at least 1 confirmed SARS-CoV-2 index case. A total of 1175 participants enrolled in the study from August 2 to November 20, 2020. Database lock was triggered on January 13, 2021, when all participants reached study day 57. Interventions: Participants were randomized to receive a single intravenous infusion of bamlanivimab, 4200 mg (n = 588), or placebo (n = 587). Main Outcomes and Measures: The primary outcome was incidence of COVID-19, defined as the detection of SARS-CoV-2 by reverse transcriptase-polymerase chain reaction and mild or worse disease severity within 21 days of detection, within 8 weeks of randomization. Key secondary outcomes included incidence of moderate or worse COVID-19 severity and incidence of SARS-CoV-2 infection. Results: The prevention population comprised a total of 966 participants (666 staff and 300 residents) who were negative at baseline for SARS-CoV-2 infection and serology (mean age, 53.0 [range, 18-104] years; 722 [74.7%] women). Bamlanivimab significantly reduced the incidence of COVID-19 in the prevention population compared with placebo (8.5% vs 15.2%; odds ratio, 0.43 [95% CI, 0.28-0.68]; P < .001; absolute risk difference, -6.6 [95% CI, -10.7 to -2.6] percentage points). Five deaths attributed to COVID-19 were reported by day 57; all occurred in the placebo group. Among 1175 participants who received study product (safety population), the rate of participants with adverse events was 20.1% in the bamlanivimab group and 18.9% in the placebo group. The most common adverse events were urinary tract infection (reported by 12 participants [2%] who received bamlanivimab and 14 [2.4%] who received placebo) and hypertension (reported by 7 participants [1.2%] who received bamlanivimab and 10 [1.7%] who received placebo). Conclusions and Relevance: Among residents and staff in skilled nursing and assisted living facilities, treatment during August-November 2020 with bamlanivimab monotherapy reduced the incidence of COVID-19 infection. Further research is needed to assess preventive efficacy with current patterns of viral strains with combination monoclonal antibody therapy. Trial Registration: ClinicalTrials.gov Identifier: NCT04497987.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , Antiviral Agents/adverse effects , Antiviral Agents/immunology , Assisted Living Facilities , COVID-19/epidemiology , Double-Blind Method , Drug Approval , Female , Health Personnel , Humans , Immunization, Passive , Incidence , Infusions, Intravenous , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Skilled Nursing Facilities , Young Adult
17.
Ann Intern Med ; 174(8): 1118-1125, 2021 08.
Article in English | MEDLINE | ID: covidwho-1181776

ABSTRACT

Multiple candidate vaccines to prevent COVID-19 have entered large-scale phase 3 placebo-controlled randomized clinical trials, and several have demonstrated substantial short-term efficacy. At some point after demonstration of substantial efficacy, placebo recipients should be offered the efficacious vaccine from their trial, which will occur before longer-term efficacy and safety are known. The absence of a placebo group could compromise assessment of longer-term vaccine effects. However, by continuing follow-up after vaccination of the placebo group, this study shows that placebo-controlled vaccine efficacy can be mathematically derived by assuming that the benefit of vaccination over time has the same profile for the original vaccine recipients and the original placebo recipients after their vaccination. Although this derivation provides less precise estimates than would be obtained by a standard trial where the placebo group remains unvaccinated, this proposed approach allows estimation of longer-term effect, including durability of vaccine efficacy and whether the vaccine eventually becomes harmful for some. Deferred vaccination, if done open-label, may lead to riskier behavior in the unblinded original vaccine group, confounding estimates of long-term vaccine efficacy. Hence, deferred vaccination via blinded crossover, where the vaccine group receives placebo and vice versa, would be the preferred way to assess vaccine durability and potential delayed harm. Deferred vaccination allows placebo recipients timely access to the vaccine when it would no longer be proper to maintain them on placebo, yet still allows important insights about immunologic and clinical effectiveness over time.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Clinical Trials, Phase III as Topic/standards , Randomized Controlled Trials as Topic/standards , Clinical Trials, Phase III as Topic/methods , Cross-Over Studies , Double-Blind Method , Drug Administration Schedule , Follow-Up Studies , Humans , Randomized Controlled Trials as Topic/methods , Research Design/standards , SARS-CoV-2 , Treatment Outcome
18.
N Engl J Med ; 384(3): 289-291, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-1038235
19.
Ann Intern Med ; 174(2): 221-228, 2021 02.
Article in English | MEDLINE | ID: covidwho-890662

ABSTRACT

Several vaccine candidates to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19) have entered or will soon enter large-scale, phase 3, placebo-controlled randomized clinical trials. To facilitate harmonized evaluation and comparison of the efficacy of these vaccines, a general set of clinical endpoints is proposed, along with considerations to guide the selection of the primary endpoints on the basis of clinical and statistical reasoning. The plausibility that vaccine protection against symptomatic COVID-19 could be accompanied by a shift toward more SARS-CoV-2 infections that are asymptomatic is highlighted, as well as the potential implications of such a shift.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Randomized Controlled Trials as Topic/methods , Asymptomatic Infections , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase III as Topic/methods , Humans , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL